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receiving sampling instructions identifying a first texture layout /

{o sample from and a sampling point having coordinates near
an edge of the principal data of the first texiure layout

;

modifying the first texture layout, the modifying comprising 212
adding al least one row or column of {exels to a given edge of //
the principal data of the first texture layout, thereby creating a

second texiure layout

:

setting the closest four texels to the sampling point in the 314
second texture layout as g filter kemel, wherein the four texels |/
include fwo texels from the added row or column, and wherein

twao texels of the filter kernel are a stride apart from the
remaining two lexels

$ 216

sampiing the texels of the filter kernel using only two logical //
load operations
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sending the sampled data for bilinear filtering -
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METHOD AND SYSTEM FOR EXPEDITING
BILINEAR FILTERING

BACKGROUND

(a) Field

The subject matter disclosed generally relates to computer
image rendering. More particularly, the subject matter
relates to bilinear filtering.

(b) Related Prior Art

Texture sampling and filtering is a fundamental operation
in two-dimensional (2D) and three-dimensional (3D) image
rendering. Texture sampling generally consists of reading
texture element data (aka texels) from an array (texture)
around given sampling coordinates, and filtering it for a
smooth appearance.

Typically the texture represents a two-dimensional color
image which is mapped onto a 3D object, but there are also
applications for non-color data, one-dimensional texture
arrays, three-dimensional texture arrays, and six 2D textures
arranged into a cube layout.

A common method for performing two-dimensional tex-
ture filtering is bilinear filtering. Other well-known tech-
niques include trilinear and anisotropic filtering which use
bilinear filtering as a building block to further enhance the
filtering quality. One-dimensional, three-dimensional and
cube texture filtering are straightforward variations of this
method.

It is often required to sample the texture with coordinates
that are outside of the texture’s dimensions. These so-called
addressing modes commonly include wrapping around (or
‘repeating’ the texture), clamping, mirroring once, and mir-
roring indefinitely. Note that a typical implementation with
bilinear filtering requires these addressing modes to be
applied to the texels individually to avoid reading outside of
the texture data array. Therefore two neighboring texels in
the filter kernel are not necessarily neighboring each other in
the texture. Therefore they are adjusted to lie within the
texture according to at least one given rule.

FIG. 1 illustrates an example of a conventional layout of
a two-dimensional texture data in memory. As shown in the
layout 100, texels are stored consecutively and at the end of
each row (for row-major textures) there can be a padding
zone P. The first texel of the next row is stored in the next
memory location after the padding zone. Memory uses
linear addresses and is thus one-dimensional, but in this
illustration each new row is depicted below the previous one
to visualize how a two-dimensional texture can be laid out
in linear memory. The data size of a row of texels, plus any
padding at the end, is the stride value that is the difference
between the memory addresses of a texel below another
texel.

In conventional methods, when the coordinate of a given
sampling point S are adjacent to the border of the data layout
as exemplified in FIG. 1, texel data has to be read from the
opposite side of the layout to avoid reading non-texel data.
For example, as shown in FIG. 1 the sampling point S is in
the column (p) on the right edge of the layout, however, in
order avoid sampling non-texel data from the padding zone,
texel data is sampled from the opposite edge e.g. column (a).
This requires a separate memory load operation for each
texel to be read. This method is otherwise known as the
‘wrapping’ addressing mode. Implementations using this
data layout have to perform extra work to apply the address-
ing mode to each texel and read each texel individually.

For cube textures, modern 3D graphics APIs also expect
that when sampling a location which would result in reading
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texels for the filter kernel outside of the two-dimensional
array of one cube face, the closest texels from the neigh-
boring cube face are read instead. This also results in
neighboring texels of the filter kernel not necessarily neigh-
boring each other in the logical texture layout, and thus,
requiring additional computing time and memory load
operations.

Therefore, there is a need for a system and method which
reduce the computation time of bilinear filtering.

SUMMARY

The embodiments provide a layout for texture data which
ensures that all texels for bilinear filtering are located in
logically neighboring locations, independent of their
addressing mode. It is therefore faster to read those texels
than with conventional methods which require the address-
ing mode to be applied to each filter kernel texel location
individually.

The ordinary memory layout for a two-dimensional tex-
ture is to store rows of texels consecutively (row-major).
Fixed-size gaps between texels and/or rows of texels may
exist for alignment reasons. Neighboring texels in the hori-
zontal or vertical direction can thus be addressed by adding
or subtracting a predetermined pitch or stride. As known in
the art, storing columns of texels consecutively (column-
major) results in an alternative memory layout that is
logically equivalent if the texture coordinates are swapped.
Likewise the order of the rows or columns can be reversed
so the first texel in memory may correspond to any corner of
the texture. Graphics systems will typically adhere to one
convention. In the following, the description is provided
with respect to a row-major texel order, with the first texel
corresponding to the top-left texture corner, but the embodi-
ments may also be applied to other layout conventions.

In one aspect, there is provided a computing system for
expediting bilinear texture sampling of texture layouts com-
prising principal data including one or more rows and one or
more columns of texels, the system comprising: a memory;
a processing unit operably connected to the memory, the
processing unit being adapted to: receive sampling instruc-
tions identifying a first texture layout to sample from and a
sampling point having coordinates near an edge of the
principal data of the first texture layout; modify the first
texture layout, including adding at least one row or column
of texels to a given edge of the principal data of the first
texture layout, thereby creating a second texture layout; set
the closest four texels to the sampling point in the second
texture layout as a filter kernel, wherein the four texels
include two texels from the added row or column, and
wherein two texels of the filter kernel are a stride apart from
the remaining two texels; sample the texels of the filter
kernel using only two logical load operations; and perform
bilinear filtering on the sampled data of the four texels.

While it is possible to implement the embodiments by
allocating new memory for the added rows and columns, it
should also be noted that the embodiments may also be
implemented using a logical operation to avoid the use of
additional memory. In a non-limiting example of implemen-
tation, the second texture layout may be created in place
whereby the additional rows/columns may be added without
requiring additional memory. For example, the first texture
layout may be allocated with sufficient padding for the
borders of the second layout to be contained within the
padding, and the principal texture data to overlap. In the
present embodiment, it is unnecessary to allocate additional
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memory to obtain the second layout, and no copying of
principal texture data is required other than to fill the border
texels.

In an embodiment, the first texture layout is a two-
dimensional image layout.

In another embodiment, the added row or column
includes duplicate texels from an opposite edge of the
principal data.

In another embodiment the first texture layout is a cube
face layout of a cube texture.

In a further embodiment, the added row or column
includes duplicate texels of an adjacent row or column of an
adjacent cube face of the cube texture.

In yet a further embodiment the system is adapted to add
rows or columns including texels of different mipmap levels
for making the stride a power of two.

In another aspect there is provided, a computer imple-
mented method for expediting bilinear texture sampling of
two-dimensional texture layouts comprising principal data
including one or more rows and one or more columns of
texels, said method comprising: receiving sampling instruc-
tions identifying a first texture layout to sample from and a
sampling point having coordinates near an edge of the
principal data of the first texture layout; modifying the first
texture layout, the modifying comprising adding at least one
row or column of texels to a given edge of the principal data
of the first texture layout, thereby creating a second texture
layout; setting the closest four texels to the sampling point
in the second texture layout as a filter kernel, wherein the
four texels include two texels from the added row or column,
and wherein two texels of the filter kernel are a stride apart
from the remaining two texels; sampling the texels of the
filter kernel using only two logical load operations; and
sending the sampled data for bilinear filtering.

In an embodiment, the modifying comprises filling the
added row or column with duplicate texels of an opposite
edge of the principal data.

In another embodiment the modifying comprises filling
the added row or column with texels of different mipmap
levels.

In a further embodiment the modifying further comprises
making the stride a power of two.

In yet a further embodiment, the method further com-
prises implementing a gatekeeper for updating the texels in
the added row or column when texels of principal data
change.

In yet another embodiment, the method further comprises
issuing pre-fetch instructions for locations around the filter
kernel to reduce an effect of a larger stride on a processor’s
cache performance.

In another aspect, there is provided a computer imple-
mented method for expediting bilinear texture sampling of
cube textures comprising adjacent cube faces, each cube
face having a texture layout including principal data com-
prising one or more rows and one or more columns of texels,
said method comprising: receiving sampling instructions
identifying a first cube face of a given cube texture to sample
from and a sampling point having coordinates near an edge
of the principal data of a first texture layout corresponding
to the first cube face; modifying the first texture layout, the
modifying comprising adding at least one row or column of
texels to a given edge of the principal data of the first texture
layout, thereby creating a second texture layout; setting the
closest four texels to the sampling point in the second texture
layout as a filter kernel, wherein the four texels include two
texels from the added row or column, and wherein two
texels of the filter kernel are a stride apart from the remain-
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ing two texels; sampling the texels of the filter kernel using
only two logical load operations; and sending the sampled
data for bilinear filtering.

In an embodiment, the modifying comprises filling the
added row or column with duplicate texels of an adjacent
row or column of an adjacent cube face.

In another embodiment, modifying the first texture layout
comprises adding an entire texture layout of a neighboring
cube face to a corresponding edge of the first texture layout.

In yet an embodiment, the modifying comprises adding
one row and one column of texels to the principal data, and
setting a corresponding corner texel between the added row
and added column as an average value of corner texels of
principal data of neighboring cub faces.

In a further embodiment, the method further comprises
implementing a gatekeeper for updating the texels in the
added row or column when texels of principal data change.

Features and advantages of the subject matter hereof will
become more apparent in light of the following detailed
description of selected embodiments, as illustrated in the
accompanying figures. As will be realized, the subject matter
disclosed and claimed is capable of modifications in various
respects, all without departing from the scope of the claims.
Accordingly, the drawings and the description are to be
regarded as illustrative in nature, and not as restrictive and
the full scope of the subject matter is set forth in the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Further features and advantages of the present disclosure
will become apparent from the following detailed descrip-
tion, taken in combination with the appended drawings, in
which:

FIG. 1 illustrates an example of a conventional layout of
a two-dimensional texture data in memory;

FIG. 2 illustrates an exemplary layout of texture data
including added border texels in accordance with an
embodiment

FIG. 3 illustrates an example of bilinear sampling at a
sampling position T;

FIG. 4 illustrates the layout of texture data of one face of
a cube map texture, in accordance with an embodiment;

FIG. 5 illustrates an exemplary representation of three
faces of a cube texture with additional borders (two of which
are only partially shown);

FIG. 6 illustrates a 16x16 two-dimensional texture with a
border around each edge, in accordance with an embodi-
ment;

FIG. 7 illustrates a possible memory layout 124 for two
neighboring 4x4 faces of a cube texture;

FIG. 8 illustrates an exemplary layout showing the pack-
ing together of three mipmap levels of a 4x4 texture to
obtain a power-of-two stride of 8 texels wide with minimal
wasted memory space, in accordance with an embodiment;

FIG. 9 illustrates an exemplary implementation of the
clamp addressing mode, in accordance with an embodiment;

FIG. 10 is flowchart of a method for expediting bilinear
texture sampling of two-dimensional texture layouts, in
accordance with an embodiment;

FIG. 11 is flowchart of a method for expediting bilinear
texture sampling of cube textures, in accordance with an
embodiment; and

FIG. 12 illustrates a generalized example of a suitable
computing environment in which several of the described
embodiments may be implemented.
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It will be noted that throughout the appended drawings,
like features are identified by like reference numerals.

DETAILED DESCRIPTION

The present document describes a method and system for
expediting bilinear filtering of textures, by reducing the
number of data load operations. The method expands the
original data layout with additional borders containing rep-
licated texels. The replicated texels correspond either to
texels of opposite edges for two-dimensional textures or
neighboring faces in cube textures. Therefore, a 2x2 filter
kernel for bilinear filtering is built which requires only one
texel address to be computed, with all texel data being
readable with two load operations which are a predeter-
mined stride apart. Different addressing modes are imple-
mented by adjusting the sampling locus.

In a non-limiting exemplary implementation of the pres-
ent embodiments, one or more columns and/or rows of
texels are added to the outer edges of the texture layout to
replicate the texel data of the opposing edge. An example is
shown in FIG. 2.

FIG. 2 illustrates an exemplary layout of texture data
including added border texels in accordance with an
embodiment. In the layout 102 an additional column q is
added after p (as compared to layout 100 in FIG. 1) which
mirrors the texels in the opposite column a. Similarly, an
additional row 17 is added which mirrors the texels in row
1. Using the present embodiment, when the coordinates of a
sampling point S are near the edge of the texture layout, a
filter kernel K is set which includes the four closest texels to
the sampling point S. In the present case, the four closest
texels includes two texels from the column p and two texels
from the column q which includes duplicate texels of
column a. Bilinear filtering is then applied to the filter kernel
K as described below with respect to FIG. 3.

The system may be configured to manage the allocation of
the border q and update the data in this column automatically
when the principal data is changed e.g. when a new image
is loaded.

In an embodiment, singular texels are added where the
new row(s) and column(s) meet, which replicate the texel
data of the opposing texture corner. In the present document,
the new texels added at the edge are called the ‘border’ of the
texture, while the original texels constitute the ‘principal’
texture data. The texture border is not directly addressable
through texture sampling. Instead, the 2x2 texel kernel for
bilinear filtering can read these texels in cases where the
kernel would otherwise have to be split up to read the texels
of' opposing edges. In other words, no sampling point will be
received having coordinates that fall in the border columns
q since the border texels in column q are not part of the
principal data. This layout with borders of replicated texels
therefore lends itself naturally for the wrapping addressing
mode.

One of the advantages of this configuration is that the two
texels on the same row of the kernel can be read in one load
operation, and the two texels on the neighboring row are a
fixed stride apart. Therefore, to read the four texels, the
address of one texel needs to be computed once, and the
adjacent texel in the same row can be read in the same
memory load operation. Similarly, the remaining two texels
are a stride apart from the first two, and can thus be read
using only one additional memory load operation.

In the present embodiments, once the coordinates of a
sampling point are known, a filter kernel K is set which
includes the closest four texels to the sampling point, two of
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which are from the replicated texels added at the edge.
Bilinear filtering may then be applied to the filter kernel K
using the method shown in FIG. 3. FIG. 3 illustrates an
example of bilinear sampling at a sampling position T. This
method includes setting a 2x2 filter kernel including four
texels cy-c; that are the closest to the location specified by
the sampling coordinates of the sampling point T. These four
texels contribute linearly to the filtered value according to
their vicinity to the sampling coordinates, in each dimension
separately. The filtered result ‘c’ for position T may be
computed using the following equation in which fractions £,
and T, are the horizontal and vertical distances of T from the
center of c,, respectively:

= e AL A AL A e F
(1-£)

Equivalent equations can be obtained by numbering the
texels differently or using the fractional distance of T
relative to another texel center. Note that T can also be the
adjusted texture sampling position obtained from applying
the addressing mode formulas. We may call this the sam-
pling locus L in other figures.

Which edges require a border depends on which texel of
the sampling kernel is considered the ‘primary’ texel. The
primary texel is the texel that will always be sampled from
inside the principal texture data array. For instance if the top
left texel of the 2x2 kernel is considered the primary one,
then the texture requires at least a border on the right and
bottom edge.

In an embodiment, it is possible to use the same data
layout to implement other addressing modes than wrapping.
For example, the clamping mode is implemented by clamp-
ing the texture coordinates to the range determined by the
centers of the edge texels in the principal texture. This
ensures that even though the bilinear filter kernel may read
the border texels, they do not contribute to the filtered result.
The mirror-once addressing mode is implemented by first
taking the absolute value of the texture sampling coordi-
nates, and then clamping them in the same way as for the
clamping mode. Mirroring (indefinitely) is implemented
using the triangle wave function with period 2, range [0, 1]
and intersecting the origin, which is subsequently again
clamped to the range of the first and last texel center in each
respective dimension. In summary the following formulas
are applied to the texture coordinates, resulting in a new
‘locus’ used for the actual sampling:

wrap mode: x'=x-floor(x)

clamp mode: x'=clamp(x, first-texel-center, last-texel-
center)

mirror-once: x'=clamp(abs(x), first-texel-center, last-
texel-center)

mirror: x'=clamp(abs(2* (x/2-floor(x/2+Y2))), first-
texel-center, last-texel-center)
In the above formulas x is a given sampling coordinate,
and x' is the resulting coordinate for the new sampling locus.
It is to be noted that these formulas use normalized texture
coordinates, but they can also be adjusted for unnormalized
coordinates. Furthermore, other mathematically equivalent
formulas can be used to obtain the same curves. Small
‘epsilon’ values may be added or subtracted from the texels
center coordinates before being used in these formulas, to
account for rounding rules which result in reading only the
intended texels within the principal texture and the borders.
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In another embodiment, it is possible to use the same
concept of texture borders to facilitate bilinear filtering of
cube textures. It requires adding a border around each edge
of the principal texture. But instead of replicating texels
from the same two-dimensional principal texture for each
face, the texel data for the border is copied from the
adjoining edges in geometrically neighboring faces. The
corner border texel stores the average value(s) of the corner
texels of the principal data of the neighboring faces (per
texel component). This allows seamless bilinear filtering of
cube textures while only having to sample from one cube
face. Again all of the texels required for the bilinear filtering
kernel are a predeterminable stride apart instead of depend-
ing on the sampling coordinates.

FIG. 4 illustrates the layout of texture data of one face of
a cube map texture, in accordance with an embodiment. As
illustrated in FIG. 4, the layout 104 includes additional rows
and columns 106, 108, 110, and 112 that were added to the
original layout 105 which includes the principal data. Each
added column/row includes the texels of the adjacent/cor-
responding column/row border of the adjacent cube face as
exemplified in FIG. 5. FIG. § illustrates an exemplary
representation of three faces of a cube texture with addi-
tional borders (two of which are only partially shown). In
this example, the corner texel of the border is the averaged
value of the corner texels of the principal data of the
neighboring faces as illustrated at 114. It illustrates part of
the ‘simple’ algorithm for filling in the border texels. Note
that in FIGS. 4 & 5, the primary texel of the kernel K
indicated by 0, can be a border texel.

Cube textures do not need an addressing mode formula to
potentially alter the effective sampling locus as is the case
for two-dimensional textures. The sampling locus corre-
sponds to the projected coordinates for the cube face which
is determined to intersect the texture sampling vector, as
known in the art. The sampling coordinates therefore never
lie outside of the range of the face that is sampled from.
However note that the locus can be arbitrarily close to any
edge and the four closest texels which constitute the bilinear
filtering kernel can exceed the principal texture on either
edge. Therefore unlike with two-dimensional sampling, in
the case of cube texture sampling the texel of the kernel
which is chosen to be the primary texel can correspond to a
border texel, and thus borders are required around each edge
for the presented fast bilinear sampling method.

The border texels of a cube texture can also be filled with
any other values that offer a result where the edges of the
cube are less perceivable due to bilinear filtering. When
considering the bilinear filtering kernel as the projection of
a four-sided beam originating from the center of the cube,
then the projection of that same beam onto the neighboring
face when sampling at the edge of the cube, is not a straight
angled rectangle enclosing the two texels that are copied into
the border when using the ‘simple’ algorithm presented
above. Hence in a more advanced embodiment the values in
the borders of a cube texture more accurately represent the
filtered result of the projected area in the other face(s) they
represent.

Although lessening the appearance of cube texture seams
around the edges is generally preferred, some graphics
systems or applications may not expect such a feature to be
implemented, or require it to be disablable. To support the
legacy behavior which corresponds to the clamping address-
ing mode used in two-dimensional sampling, applied to the
cube face being sampled from, the borders can be made to
contain texel values which repeat the texel values at the
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edges. Alternatively the sampling locus does have to be
clamped to the range determined by the centers of the edge
texels.

In some graphics systems it is unknown or hard to track
whether a two-dimensional texture is either only used for
two-dimensional sampling or can also be or become one of
the faces of a cube texture and be sampled using three-
dimensional texture coordinates. In particular some graphics
APIs allow a selection of six two-dimensional textures to be
interpreted as a cube texture. For these two-dimensional
textures that may later be used as cube faces, it is prudent to
allocate memory for borders around each edge. Even if it is
never used for cube sampling, the additional row and
column of texels typically does not consume much memory,
and avoids having to reallocate and copy over all data if too
few border edges were present for cube sampling.

FIG. 6 illustrates a 16x16 two-dimensional texture with a
border around each edge, in accordance with an embodi-
ment. It can therefore be suitable as a cube texture face. In
the example of FIG. 6, the right border 120 and the bottom
border 122 of the layout 118 have been filled with ‘wrapped’
texels from the principal texture data to be used for faster
two-dimensional bilinear texture sampling instead. This
illustrates that designating a texture for two-dimensional
sampling or as a face of a cube texture can happen after
allocating its memory, as long as sufficient space is reserved
for a border around each edge. Note that it can still be used
as a cube texture face as well as long as the bilinear filtering
code for this case explicitly applies the addressing mode to
each kernel texel and thus accesses only principal data
(possibly from other faces). A padding zone to the far right
has been omitted from this illustration but could be present
in an equivalent memory layout.

In another embodiment, the faces of cube textures which
are known not to be used for two-dimensional sampling can
be allocated in such a way that some of the borders can be
eliminated. By placing the principal data of faces that share
an edge next to each other, either horizontally or vertically
with respect to which edge is shared, they each have a row
or column of principal texels which can act as the border for
the other face. These texels already hold the values that the
‘simple’ border filling algorithm would otherwise have to
copy explicitly. Hence this approach saves both the addi-
tional memory for some border texels, and the time to fill
them. Note that this approach also eliminates certain edge
texels of the border.

In cases where previously the corner border texel would
be read, a texel from the other face’s border will be read
instead. And instead of having the average value of the two
neighboring face’s primary corner texels, it stores the corner
texel value of just the third neighboring face. This results in
that texel value having additional weight in the bilinear
filtering. However, the ‘simple’ algorithm was already a
compromise for how the three texels at a cube corner affect
the filtering result unevenly. Most graphics APIs allow for a
different compromise, thus making the elimination of neigh-
boring border edges and corners in this fashion a worthwhile
technique. Again alternative ‘filtered’ values could be used
in the remaining borders, but the eliminated borders are
forced to use implicit values corresponding to the ‘simple’
algorithm.

FIG. 7 illustrates a possible memory layout 124 for two
neighboring 4x4 faces of a cube texture. The principal data
of'each cube face is indicated with two different patterns 126
and 128. In the present example, there is no explicit border
to the right of the left principal texture data, and no border
to the left of the right principal data. However, the sampling
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kernel can safely read from the column of texels just right of
the left principal data or left of the right principal data, which
act as an implicit border for each face respectively. No
updating of this implicit border is required, and the actual
illustrated border can be filled with (filtered) values origi-
nating from the other faces to obtain practically imperceiv-
able edges between faces. More borders can be shared/
eliminated than illustrated here, and there could be an
additional padding zone to the right.

It is to be noted that when the principal texture data
changes, the borders may require updating. In an embodi-
ment, a gatekeeper is used to control read and write access
to the texture data. When write access is requested for a
region which includes edge texels of the principal texture,
the corresponding texels in the border are flagged as ‘dirty’
so that on the next read access request for bilinear filtering
they can be updated with the new data. The updating can
also be done conservatively at a coarser granularity by
tracking the dirty state for subsections of the border or the
entire border, and/or by considering the request for write
access to a smaller region or an unspecified region to require
a border update.

The gatekeeper may also need to be informed of the type
of texture sampling that will be performed, so that the border
can be updated appropriately for two-dimensional or cube
sampling. When a two-dimensional texture can be used both
for two-dimensional sampling and as a face of a cube texture
simultaneously, the texture data has to be duplicated and
each copy requires different border updates. This approach
also requires keeping track of which copy received new
principal data the last so the other one can have its principal
data and border updated appropriately as well. In an alter-
native embodiment a fixed type of border and associated
update algorithm is chosen per texture, for instance based on
the first sample access request. The gatekeeper informs the
sampler code of the type of border that is present so that it
can select between a bilinear filtering implementation which
does or does not require the ability to split up the filter
kernel. This way there are no additional copies to be
managed while still optimising bilinear filtering for one kind
of sampling which is deemed to be used most frequently.

Those skilled in the art will observe that some of the
methods presented above can also be applied to one-dimen-
sional and three-dimensional textures in a straightforward
manner. One-dimensional textures require only filtering two
texels in a linear fashion. The minimal border thus consists
of a single extra texel. Three-dimensional texture filtering
can be implemented by representing the texture as multiple
layers of two-dimensional textures and linearly filtering in
the third dimension two bilinearly filtered samples which
used the first two texture coordinates.

It is advantageous for the stride to be a power of two. This
allows for computing the linear address of a texel using a
shift operation instead of a multiplication, which is typically
faster, and consumes less energy. However, when adding
borders to a texture with power-of-two dimensions, the
‘natural’ stride (i.e. without padding) can go from being a
power-of-two value to another value that is no longer a
power-of-two. The amount of padding required to make it a
power of two again can be almost as large as the texture data
itself. In an embodiment, the padding zone created by
making the stride a power of two, may be used for storing
other texture data. For instance many textures have multiple
‘mipmap’ levels which are used in the art for reducing
aliasing during minification. Mipmaps consist of pre-filtered
scaled down versions of the original texture. They can
themselves be considered textures and the original full
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resolution texture forms the top level of the mipmap.
Because the lower levels of the mipmap are smaller, some or
all of them can fit in the padding zone of the top level. These
levels would all share the same stride for accessing the texel
on their next row, despite having different dimensions.

FIG. 8 illustrates an exemplary layout showing the pack-
ing together of three mipmap levels of a 4x4 texture to
obtain a power-of-two stride of 8 texels wide with minimal
wasted memory space, in accordance with an embodiment.
The patterned areas 132, 134, and 136 represent the princi-
pal data of the 4x4, 2x2 and 1x1 mipmap levels, respec-
tively, and they each have borders to the right and bottom
and a corner border texel. The black texel 138 marked P is
a padding texel. Below it there is another unused padding
texel that could have been situated but it does not have to be
allocated because it is not required for holding principal data
or border data or to align the next row of texels to the stride
because there is no next row.

Many variants of ‘packing’ algorithms can be used for
reducing the amount of padding that does not contain any
useful data, in accordance with an embodiment. It can even
pack mipmap levels of different textures. The stride also
does not have to be the smallest power of two that allows to
fit the top level texture row size (for row-major textures)
plus the respective border texels. It can be made larger to
make more room for other texture mipmap levels. For
instance a 6x6 texture could have a size of 7x7 with borders,
but having a stride of 8 texel sizes doesn’t fit much if
anything else in the padding area. A stride of 16 texel sizes
would allow it to fit all the mipmap levels and possibly some
or all of the mipmap levels of some other textures. Having
all mipmap levels of a texture share the same stride has the
advantage that only one stride value has to be stored and
accessed. In particular for tri-linear filtering it would other-
wise require accessing two stride values. One may also
choose the stride to fit at least the largest texture supported
by the graphics system. This way the stride is a constant and
could be encoded as part of the sampling code instead of
having to store it as metadata of the texture.

Making the stride larger can have an adverse effect on a
processor’s cache performance. Automatic hardware pre-
fetching typically has a limit on the access stride size for
which it can detect a predictable pattern. The present
embodiments address this problem by issuing software
pre-fetch instructions for locations around the filter kernel.
Alternatively or additionally, it is possible to record the
sampling coordinates or addresses and use them to predict
future coordinates or addresses at the next occasion the same
texture is sampled (or the same logical sampler unit is used),
before overwriting them with the new coordinates or
addresses. The predicted values would then be used by
pre-fetch instructions.

Another way to improve cache performance is to divide
the texture into rectangular tiles and add borders to each tile
which, when they have a neighboring tile in the texture
contain the corresponding texel values from those tiles, and
when they don’t have a neighboring tile contain wrapped
around texel values or texel values to avoid the appearance
of seams in the case of a cube texture as presented earlier.
This approach allows each tile to have a smaller stride for
accessing texels in the next row, suitable for the processor to
use automatic hardware pre-fetching. The texels of the tiles
(including the border texels) are stored sequentially in
memory, with possibly some padding in between each row
(again assuming a row-major layout).

The tiles can be stored sequentially in either a row-major
or column-major order, with or without padding, or they can
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be stored using any other sufficiently easy to compute order
which improves their locality, such as for example Morton
order. Once the corresponding tile is determined for a
sampling locus, bilinear filtering can be performed without
requiring addressing and loading each texel for the kernel
individually, as detailed before. Also similarly as before the
padding within each tile can be used to have power-of-two
strides and the padding space can be recycled to store other
mipmap levels or textures. Padding can also exist between
tiles to facilitate calculating in which tile a sampling locus
is situated and where it is stored in memory, which can be
used for storing additional tiles. For instance Morton order
requires a power-of-two number of tiles in each direction.

FIG. 9 illustrates an exemplary implementation of the
clamp addressing mode, in accordance with an embodiment.
The layout 140 shown in FIG. 9 uses an 8x8 texture with
borders at the right and bottom. The dashed lines 142
intersect the centers of the first and last rows and columns of
the principal texture. In an embodiment, the texture sam-
pling at a given position T is clamped to be on or just inside
the area delimited by the dashed lines, and results in a
sampling locus L. If one or more locus coordinates are at the
center of a texel, it is arbitrary which equidistant texels will
also be part of the bilinear kernel K, as long as consistent
rules are used to result in reading texels in a 2x2 arrange-
ment suitable for bilinear filtering and not reading texels
logically outside of the principal texture and the borders.
Examples are provided below.

For example the position T1 and its corresponding locus
L1 and bilinear kernel K1 illustrate an example in which the
chosen rules result in reading texels of the border. Note that
even though these texel borders contain values from the
opposing edge of the principal texture and thus correspond
to a wrapping mode instead of a clamping mode, they do not
contribute to the filtered result because the fractions used in
the bilinear filtering make their weight zero.

For example the position T2 and its corresponding locus
L2 and bilinear kernel K2 illustrate another example in
which the chosen rules result in not reading border texels.
This can be achieved either by adjusting the clamping range
with epsilon values, or by adhering to different rounding
rules than the first example. Care is required to ensure that
at the opposite edge the same rounding rules do not result in
reading texels which are logically outside of the texture and
border. This can be avoided for example by using an epsilon
value for the clamping value at that edge, or by adding a
border at that edge. The use of epsilon values may or may
not result in a minor contribution to the filtered result of
texel values not on the edge when sampling at the edge. This
can be avoided by making the epsilon value smaller than the
precision or half the precision at which the bilinear filtering
is performed, adjusted for the size of the texture in case of
normalized sampling coordinates.

The need for borders may be eliminated altogether with
the use of epsilon values, if the texture will only be sampled
with addressing modes that require a clamp operation.

The addressing mode for each coordinate of the texture
sampling position may differ. Other addressing mode for-
mulas which use the clamp( ) operation work similarly, but
T may first undergo another transformation before the
clamping is performed. There may also be subsequent
transformations, if this results in an equivalent formula
which implements the requested addressing mode.

In the above, the embodiments are described with respect
to a single texture sampling operation as if the single texture
sampling operation is executed individually. However, in
practice many of these operations may be executed in
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parallel and/or concurrently, using for example SIMD, SMT
and/or multi-core technology. The two load operations to
obtain all the data for the bilinear kernel can be part of two
‘gather’ instructions, which is the SIMD equivalent of a load
operation, for multiple kernels in parallel. Alternatively the
two load operations can both be part of a single gather
instruction. Note that the processor may internally split up
gather operations into multiple load operations, and even a
logical scalar load operation may be split into multiple parts
and be reassembled if it straddles a cache line boundary or
multiple ways or banks. These are hardware implementation
details, but it is important to note that even though gather
instructions can do multiple load operations in parallel and
could thus be used to load each texel of a bilinear kernel as
a separate element and yet in parallel, it is beneficial to use
gather instructions where each element contains two texels
and they are unlikely to require split load operations inter-
nally.

FIG. 10 is flowchart of a method for expediting bilinear
texture sampling of two-dimensional texture layouts, in
accordance with an embodiment. As shown in FIG. 10 the
method 200 begins at step 210 by receiving sampling
instructions identifying a first texture layout to sample from
and a sampling point having coordinates near an edge of the
principal data of the first texture layout. Step 212 comprises
modifying the first texture layout, the modifying comprising
adding at least one row or column of texels to a given edge
of the principal data of the first texture layout, thereby
creating a second texture layout. Step 214 comprises setting
the closest four texels to the sampling point in the second
texture layout as a filter kernel, wherein the four texels
include two texels from the added row or column, and
wherein two texels of the filter kernel are a stride apart from
the remaining two texels. Step 216 comprises sampling the
texels of the filter kernel using only two logical load
operations. Step 218 comprises sending the sampled data for
bilinear filtering.

FIG. 11 is flowchart of a method for expediting bilinear
texture sampling of cube textures, in accordance with an
embodiment. As shown in FIG. 11, the method 219 begins
at step 220 by receiving sampling instructions identifying a
first cube face of a given cube texture to sample from and a
sampling point having coordinates near an edge of the
principal data of a first texture layout corresponding to the
first cube face. Step 22 comprises modifying the first texture
layout, the modifying comprising adding at least one row or
column of texels to a given edge of the principal data of the
first texture layout, thereby creating a second texture layout.
Step 224 comprises setting the closest four texels to the
sampling point in the second texture layout as a filter kernel,
wherein the four texels include two texels from the added
row or column, and wherein two texels of the filter kernel are
a stride apart from the remaining two texels. Step 226
comprises sampling the texels of the filter kernel using only
two logical load operations. Step 228 comprises sending the
sampled data for bilinear filtering.

Computing Environment

FIG. 12 illustrates a generalized example of a suitable
computing environment 700 in which several of the
described embodiments may be implemented. The comput-
ing environment 700 is not intended to suggest any limita-
tion as to scope of use or functionality, as the techniques and
tools may be implemented in diverse general-purpose or
special-purpose computing environments.

With reference to FIG. 12, the computing environment
700 includes at least one CPU 710 and associated memory
720 and optionally at least one GPU or other co-processing
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unit 715 and associated memory 725 used for video accel-
eration. In FIG. 12, this most basic configuration 730 is
included within a dashed line. The processing unit 710
executes computer-executable instructions and may be a real
or a virtual processor. In a multi-processing system, multiple
processing units execute computer-executable instructions
to increase processing power. A host encoder or decoder
process offloads certain computationally intensive opera-
tions to the GPU 715. The memory 720, 125 may be volatile
memory (e.g., registers, cache, RAM), non-volatile memory
(e.g., ROM, EEPROM, flash memory, etc.), or some com-
bination of the two. The memory 720, 125 stores software
780 for a decoder implementing one or more of the decoder
innovations described herein.

A computing environment may have additional features.
For example, the computing environment 700 includes
storage 740, one or more input devices 750, one or more
output devices 760, and one or more communication con-
nections 770. An interconnection mechanism (not shown)
such as a bus, controller, or network interconnects the
components of the computing environment 700. Typically,
operating system software (not shown) provides an operat-
ing environment for other software executing in the com-
puting environment 700, and coordinates activities of the
components of the computing environment 700.

The storage 740 may be removable or non-removable,
and includes magnetic disks, magnetic tapes or cassettes,
CD-ROMs, DVDs, or any other medium which can be used
to store information and which can be accessed within the
computing environment 700. The storage 740 stores instruc-
tions for the software 780.

The input device(s) 750 may be a touch input device such
as a keyboard, mouse, pen, or trackball, a voice input device,
a scanning device, or another device that provides input to
the computing environment 700. For audio or video encod-
ing, the input device(s) 750 may be a sound card, video card,
TV tuner card, or similar device that accepts audio or video
input in analog or digital form, or a CD-ROM or CD-RW
that reads audio or video samples into the computing envi-
ronment 700. The output device(s) 760 may be a display,
printer, speaker, CD-writer, or another device that provides
output from the computing environment 700.

The communication connection(s) 770 enable communi-
cation over a communication medium to another computing
entity. The communication medium conveys information
such as computer-executable instructions, audio or video
input or output, or other data in a modulated data signal. A
modulated data signal is a signal that has one or more of its
characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not
limitation, communication media include wired or wireless
techniques implemented with an electrical, optical, RF,
infrared, acoustic, or other carrier.

The techniques and tools can be described in the general
context of computer-readable media. Computer-readable
media are any available media that can be accessed within
a computing environment. By way of example, and not
limitation, with the computing environment 700, computer-
readable media include memory 720, storage 740, commu-
nication media, and combinations of any of the above.

The techniques and tools can be described in the general
context of computer-executable instructions, such as those
included in program modules, being executed in a comput-
ing environment on a target real or virtual processor. Gen-
erally, program modules include routines, programs, librar-
ies, objects, classes, components, data structures, etc. that
perform particular tasks or implement particular abstract
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data types. The functionality of the program modules may be
combined or split between program modules as desired in
various embodiments. Computer-executable instructions for
program modules may be executed within a local or distrib-
uted computing environment.

While preferred embodiments have been described above
and illustrated in the accompanying drawings, it will be
evident to those skilled in the art that modifications may be
made without departing from this disclosure. Such modifi-
cations are considered as possible variants comprised in the
scope of the disclosure.

The invention claimed is:

1. A computing system for expediting bilinear texture
sampling of texture layouts comprising principal data
including one or more rows and one or more columns of
texels, the system comprising:

a memory;

a processing unit operably connected to the memory, the

processing unit being adapted to:

receive sampling instructions identifying a first texture
layout to sample from and a sampling point having
coordinates near an edge of the principal data of the
first texture layout;

modify the first texture layout, including adding at least
one row or column of texels to a given edge of the
principal data of the first texture layout, thereby
creating a second texture layout;

set the closest four texels to the sampling point in the
second texture layout as a filter kernel, wherein the
four texels include two texels from the added row or
column, and wherein two texels of the filter kernel
are a stride apart from the remaining two texels;

sample the texels of the filter kernel using only two
logical load operations; and

perform bilinear filtering on the sampled data of the
four texels wherein the added row or column
includes duplicate texels from an opposite edge of
the principal data.

2. The computing system of claim 1, wherein the first
texture layout a two-dimensional image layout.

3. The computing system of claim 1, wherein the first
texture layout is a cube face layout of a cube texture.

4. The computing system of claim 1, wherein the system
is adapted to add rows or columns including texels of
different mipmap levels for making the stride a power of
two.

5. A computer implemented method for expediting bilin-
ear texture sampling of two-dimensional texture layouts
comprising principal data including one or more rows and
one or more columns of texels, said method comprising:

receiving sampling instructions identifying a first texture

layout to sample from and a sampling point having
coordinates near an edge of the principal data of the
first texture layout;
modifying the first texture layout, the modifying com-
prising adding at least one row or column of texels to
a given edge of the principal data of the first texture
layout, thereby creating a second texture layout;

setting the closest four texels to the sampling point in the
second texture layout as a filter kernel, wherein the four
texels include two texels from the added row or col-
umn, and wherein two texels of the filter kernel are a
stride apart from the remaining two texels;

sampling the texels of the filter kernel using only two

logical load operations; and

sending the sampled data for bilinear filtering;
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wherein the modifying comprises filling the added row or
column with one of: duplicate texels of an opposite
edge of the principal data and texels of different mip-
map levels.

6. The method of claim 5, wherein the modifying further
comprises making the stride a power of two.

7. The method of claim 5, further comprising:

implementing a gatekeeper for updating the texels in the

added row or column when texels of principal data
change.
8. The method of claim 5, further comprising: issuing
pre-fetch instructions for locations around the filter kernel to
reduce an effect of a larger stride on a processor’s cache
performance.
9. A computer implemented method for expediting bilin-
ear texture sampling of cube textures comprising adjacent
cube faces, each cube face having a texture layout including
principal data comprising one or more rows and one or more
columns of texels, said method comprising:
receiving sampling instructions identifying a first cube
face of a given cube texture to sample from and a
sampling point having coordinates near an edge of the
principal data of a first texture layout corresponding to
the first cube face;
modifying the first texture layout, the modifying com-
prising adding at least one row or column of texels to
a given edge of the principal data of the first texture
layout, thereby creating a second texture layout;

setting the closest four texels to the sampling point in the
second texture layout as a filter kernel, wherein the four
texels include two texels from the added row or col-
umn, and wherein two texels of the filter kernel are a
stride apart from the remaining two texels;

sampling the texels of the filter kernel using only two

logical load operations;

sending the sampled data for bilinear filtering; and

implementing a gatekeeper for updating the texels in the

added row or column when texels of principal data
change.

10. The method of claim 9, wherein the modifying com-
prises filling the added row or column with duplicate texels
of an adjacent row or column of an adjacent cube face.

11. The method of claim 9, wherein modifying the first

texture layout comprises adding an entire texture layout of

a neighboring cube face to a corresponding edge of the first
texture layout.
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12. The method of claim 9, wherein the modifying com-
prises adding one row and one column of texels to the
principal data, and setting a corresponding corner texel
between the added row and added column as an average
value of corner texels of principal data of neighboring cube
faces.

13. The method of claim 9, further comprising: issuing
pre-fetch instructions for locations around the filter kernel to
reduce an effect of a larger stride on a processor’s cache
performance.

14. The method of claim 9, wherein the modifying com-
prises filling the added row or column with texels of
different mipmap levels.

15. The method of claim 14, wherein the modifying
further comprises making the stride a power of two.

16. A computing system for expediting bilinear texture
sampling of texture layouts comprising principal data
including one or more rows and one or more columns of
texels, the system comprising:

a memory;

a processing unit operably connected to the memory, the

processing unit being adapted to:

receive sampling instructions identifying a first texture
layout to sample from and a sampling point having
coordinates near an edge of the principal data of the
first texture layout;

modify the first texture layout, including adding at least
one row or column of texels to a given edge of the
principal data of the first texture layout, thereby
creating a second texture layout;

set the closest four texels to the sampling point in the
second texture layout as a filter kernel, wherein the
four texels include two texels from the added row or
column, and wherein two texels of the filter kernel
are a stride apart from the remaining two texels;

sample the texels of the filter kernel using only two
logical load operations; and

perform bilinear filtering on the sampled data of the
four texels;

wherein the system is adapted to add rows or columns

including texels of different mipmap levels for making
the stride a power of two.
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